Problem Sheet 2:Additional Questions v2

Problem Sheet 2:Stirling's Theorem

Stirling's Theorem relates to any asymptotic result for N ! as $N \rightarrow \infty$. In Problem Sheet 1 you were asked to show

$$
\begin{equation*}
e\left(\frac{N}{e}\right)^{N} \leq N!\leq e N\left(\frac{N}{e}\right)^{N} \tag{35}
\end{equation*}
$$

by examining

$$
\log N!=\sum_{1 \leq n \leq N} \log n
$$

In Chapter 2 we showed that

$$
\begin{equation*}
\sum_{1 \leq n \leq x} \log x=x \log x-x+O(\log x) \tag{36}
\end{equation*}
$$

for any real $x>1$. To improve (35) we need to improve (36), but only for integer x.
17. The function $\{t\}$ is periodic, period 1. The result of Question 1

$$
\begin{equation*}
\int_{\alpha}^{\alpha+1}\{t\} d t=\frac{1}{2} \tag{37}
\end{equation*}
$$

can be interpreted as saying that $\{t\}$ has average value $1 / 2$.
Define

$$
P(x)=\int_{1}^{x}\left(\{t\}-\frac{1}{2}\right) d t .
$$

Prove that $P(x)$ is periodic, period 1 and $P(n)=0$ for all $n \in \mathbb{Z}$.
18. Euler Summation, Proposition 2.8, is for sums over $n \leq x$ with x real. Improved results can be given when x is an integer.
i) Prove

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \log n=N \log N-N+1+\int_{1}^{N} \frac{\{t\}}{t} d t \tag{38}
\end{equation*}
$$

for integers $N \geq 1$.
ii) Prove, by integrating by parts,

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \log n=N \log N-N+\frac{1}{2} \log N+1+\int_{1}^{N} \frac{P(t)}{t^{2}} d t \tag{39}
\end{equation*}
$$

for integers $N \geq 1$, where $P(t)$ is the function seen in Question 17 .
iii) Prove that there exists a constant C such that

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \log n=N \log N-N+\frac{1}{2} \log N+C+O\left(\frac{1}{N}\right), \tag{40}
\end{equation*}
$$

for integers $N \geq 1$.
Hint Use an idea seen in the proof of Theorem 2.9, replacing any integral over $[1, x]$ of an integrable function by an integral over $[1, \infty)$ and then estimating the tail end integral over (x, ∞).

This could be compared with (36),

$$
\sum_{1 \leq n \leq x} \log n=x \log x-x+O(\log x),
$$

for real $x \geq 1$.
iv) Deduce Stirling's formula in the form

$$
N!=A\left(\frac{N}{e}\right)^{N} \sqrt{N}\left(1+O\left(\frac{1}{N}\right)\right)
$$

for some constant A.
It can be shown that $A=\sqrt{2 \pi}$ (but not here)..
This shows that the true result for N ! lies 'midway' between the bounds in (35).
19. For those who need more like Questions 11 and 12. On a previous Problem Sheet you were asked to show that

$$
\sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{\beta}}
$$

converges iff $\beta>1$? For various reasons we consider the n-th prime to satisfy $p_{n} \approx n \log n$. Then $\log p_{n} \approx \log n$ and

$$
p_{n}\left(\log \log p_{n}\right)^{\beta} \approx n \log n(\log \log n)^{\beta} .
$$

Prove that

$$
\sum_{p \geq 3} \frac{1}{p(\log \log p)^{\beta}}
$$

converges iff $\beta>1$.
Hint Remove the $1 /(\log \log p)^{\beta}$ factor by partial summation and then apply Merten's Theorems.
20. i) Using the same method as in Question 18 prove that

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \frac{1}{n}=\log N+\gamma+\frac{1}{2 N}+O\left(\frac{1}{N^{2}}\right) \tag{41}
\end{equation*}
$$

for integer $N \geq 1$, and where γ is Euler's constant.
ii) Why will (41) not hold if the integer N is replaced by real x ?

In previous questions we have looked at $\sum(\log n)^{\ell}$ and $\sum(\log n)^{\ell} / n$. The latter sum has a distinctly simpler result, two main terms and best possible error, whilst the first has $\ell+1$ main terms. Here we look at $\sum \log ^{\ell}(x / n)$ and $\sum\left(\log ^{\ell}(x / n)\right) / n$. The results are reversed in that the first sum has a simpler form than the second.
21. Prove, using (29), that for all integers $\ell \geq 1$ we have

$$
\sum_{n \leq x} \frac{\log ^{\ell}(x / n)}{n}=\frac{1}{\ell+1} \log ^{\ell+1} x+O\left(\log ^{\ell} x\right)
$$

22. Use Question 5 to improve Question 21 and show that for every integer $\ell \geq 1$, there exists a polynomial $Q_{\ell}(y)$ of degree $\ell+1$ leading coefficient $1 /(\ell+1)$ such that

$$
\sum_{n \leq x} \frac{\log ^{\ell}(x / n)}{n}=Q_{\ell}(\log x)+O\left(\frac{\log ^{\ell} x}{x}\right)
$$

Hint use the Binomial expansion on $\log ^{\ell}(x / n)$.
23. Apply (29) to prove that

$$
\begin{equation*}
\sum_{n \leq x} \log ^{\ell}\left(\frac{x}{n}\right)=\ell!x+O_{\ell}\left(\log ^{\ell} x\right) \tag{42}
\end{equation*}
$$

for all integers $\ell \geq 0$.
24. Prove the discrete version of Partial Summation: For integers $N \geq$ $M \geq 1$ we have

$$
\begin{array}{rl}
\sum_{r=M}^{N} a_{r} f(r)=\sum_{r=M}^{N-1} & A(r)(f(r)-f(r+1)) \\
& +A(N) f(N)-A(M-1) f(M)
\end{array}
$$

where $A(n)=\sum_{r=1}^{n} a_{r}($ Conventionally $A(0)=0)$.
Note This result is useful when f is not differentiable. If f has a continuous derivative you can write

$$
f(r)-f(r+1)=-\int_{r}^{r+1} f^{\prime}(t) d t
$$

and you recover the Partial Summation seen in the notes.
Hint Note that $a_{r}=A(r)-A(r-1)$.
25. Prove Dirichlet's test for convergence. In the notation of Question 24, suppose that
i) there exists $C>0$ such that $|A(r)| \leq C$ for all $r \geq 1$;
ii) $f(r) \rightarrow 0$ as $r \rightarrow \infty$;
iii) $\sum_{r=1}^{\infty}|f(r)-f(r+1)|$ is convergent, with sum F, say.

Then $\sum_{r=1}^{\infty} a_{r} f(r)$ converges, to S say, with $|S| \leq C F$.
Hint Use partial summation to rewrite the given sum as a sum on which you can apply a comparison test for series from First Year Analysis.
26. Question on Merten's Theorems extended Recall from Chapter 1 that given $N \in \mathbb{N}$ the set \mathcal{N} is defined by $\mathcal{N}=\{n: p \mid n \Rightarrow p \leq N\}$ and we used the fact that

$$
\sum_{n \in \mathcal{N}} \frac{1}{n}>\sum_{n \leq N} \frac{1}{n}=\log N+O(1)
$$

Prove that

$$
\sum_{n \in \mathcal{N}} \frac{1}{n}=\kappa \log N+O(1)
$$

for some $\kappa>0$.
What is the numerical value of κ ?
Hint Write this sum as an Euler Product.
27. (Hard) Show that if $h(t) \rightarrow c$ as $t \rightarrow \infty$ then

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{1}^{x} \frac{h(t)}{t} d t \rightarrow c
$$

Deduce from Question 14 that IF $\lim _{t \rightarrow \infty} \psi(t) / t$ exists then the limit has value 1 .

Note, this is not a proof of the Prime Number Theorem, but shows what the correct statement of the Prime Number Theorem should be.

Hint You need to verify the $\varepsilon-X$ definition of limit at infinity, i.e. for all $\varepsilon>0$ there exists X such that if $x>X$ then

$$
\left|\frac{1}{\log x} \int_{1}^{x} \frac{h(t)}{t} d t-c\right|<\varepsilon .
$$

To this end write

$$
c=\frac{1}{\log x} \int_{1}^{x} \frac{c}{t} d t
$$

substitute in and try to make use of the assumption that $h(t) \rightarrow c$ as $t \rightarrow \infty$.

